早期的基因治疗可能会减缓亨廷顿病

在一项针对小鼠的新研究中,约翰霍普金斯医学研究人员报告说,使用 MRI 扫描来测量大脑中的血容量可以作为一种非侵入性方式来跟踪早期亨廷顿病的基因编辑疗法的进展,亨廷顿病是一种攻击神经退行性疾病的疾病脑细胞。研究人员表示,通过使用这种类型的基因疗法识别和治疗已知会导致亨廷顿病的突变,在患者开始出现症状之前,它可能会减缓疾病的进展。 该研究的结果于 5 月 27 日发表在《大脑》杂志上。 “这项研究令人兴奋的是,有机会确定一种可靠的生物标志物,可以在患者开始出现症状之前追踪基因疗法的潜在成功,”转化神经生物学实验室主任、医学博士、医学博士、医学博士段文振说。约翰霍普金斯大学医学院精神病学和行为科学专业。“这样的生物标志物可以促进新疗法的开发,并帮助我们确定开始它们的最佳时间。” 亨廷顿病是一种罕见的遗传病,由人类 4 号染色体上的单个缺陷基因(称为“亨廷顿”)引起。该基因从父母传给孩子——如果父母一方有突变,每个孩子都有 50% 的机会遗传它。亨廷顿病无法治愈,并可能导致情绪障碍、智力丧失和不受控制的运动。由于基因检测,人们可以在症状出现之前很久就知道他们是否患有这种疾病,这通常发生在 40 多岁或 50 多岁。 在这项研究中,段和她的团队合作与肯尼迪克里格研究所在马里兰州巴尔的摩市,谁开发了一种新方法,能够更精确地测量同事血量在大脑利用先进的功能性核磁共振成像扫描。通过扫描,他们可以映射的轨迹血流量小血管称为小鼠的设计,以携带反映亨廷顿氏病的早期阶段在人类亨廷顿的人类基因突变的大脑动脉。 Duan 指出,亨廷顿舞蹈症患者的大脑中有许多已知的代谢变化,这些变化会在疾病的早期阶段引发脑血容量反应。血容量是脑细胞供氧的关键标志,而脑细胞又为神经元功能提供能量。但是对于亨廷顿病,大脑的小动脉血容量急剧减少,随着疾病的进展,这使得神经元由于缺氧而恶化。 在一系列实验中,研究人员使用一种称为 CRISPR 的基因编辑技术抑制了小鼠亨廷顿基因的突变,CRISPR 是一种编辑基因组的工具,可以通过改变 DNA 序列来修改基因功能。然后,他们使用 MRI 扫描技术和其他测试来跟踪具有亨廷顿基因突变的小鼠(他们编辑出有缺陷的基因序列)和对照组小鼠(其中有缺陷的基因未经编辑)随时间推移的大脑功能。 实验评估了亨廷顿病突变小鼠在 3、6 和 9 个月大时(分别是症状前阶段、症状开始阶段和症状后阶段)的小动脉血容量轨迹异常。研究人员研究了抑制神经元中突变的亨廷顿基因是否可以使症状前阶段改变的小动脉血容量正常化,以及亨廷顿基因在症状前阶段的表达减少是否可以延迟甚至阻止症状的发展。 “总的来说,我们的数据表明,脑小动脉血容量测量可能是一种很有前途的非侵入性生物标志物,用于在尚未表现出疾病症状的亨廷顿舞蹈症患者中测试新疗法,”段说。“在这个早期阶段引入治疗可能会带来长期的好处。” 当研究人员绘制脑血容量轨迹图并对 3 个月大的小鼠进行各种大脑和运动测试,并将测试与对照组的测试进行比较时,除了脑血容量外,他们没有观察到显着差异。然而,带有亨廷顿基因的小鼠的亨廷顿病症状在 6 个月大时开始,并在 9 个月大时逐渐恶化,这表明脑血容量的改变发生在运动症状和脑细胞萎缩之前——这种疾病的典型特征。 还发现脑血容量的变化与亨廷顿病患者开始出现症状之前观察到的相似,随着症状的开始和疾病随着时间的推移而下降。 研究人员还分析了具有突变亨廷顿基因的小鼠在 3 个月和 9 个月大时大脑中小动脉血管的结构,发现症状前阶段的血管节段数量没有差异。然而,他们观察到较小的血管具有增加的密度和减小的直径,这可能是补偿受损神经元脑功能的血管反应。研究人员得出结论,这可能表明,血管结构受损会导致小动脉血容量降低,并可能损害补偿症状阶段损失的能力。 考虑到亨廷顿舞蹈症的症状不仅取决于脑细胞损失,还取决于神经元如何恶化,研究人员着手确定在小鼠出现症状前阶段抑制亨廷顿基因是否可以延迟甚至阻止疾病进展。为此,研究人员在 2 阅读更多…

神经胶质细胞有助于减轻亨廷顿病的神经损伤

大脑不是受伤或疾病的被动接受者。研究表明,当神经元死亡并破坏它们与其他神经元保持的信息自然流动时,大脑会通过重定向其他神经元网络的通信来进行补偿。这种调整或重新布线一直持续到损坏超出补偿范围。 这种调整过程是大脑可塑性或其改变或重组神经网络能力的结果,发生在神经退行性疾病中,例如阿尔茨海默氏症、帕金森氏症和亨廷顿氏病 (HD)。随着病情的发展,许多基因改变了它们的正常表达方式,使一些基因上升而另一些基因下降。研究 HD 的 Juan Botas 博士等研究人员面临的挑战是确定哪些基因表达变化与引起疾病有关,哪些有助于减轻损害,因为这对于设计有效的治疗干预措施至关重要。 在贝勒医学院的实验室中,Botas 和他的同事希望了解是什么导致HD 中神经元之间的通讯或突触丢失。到目前为止,研究主要集中在神经元上,因为正常的亨廷顿基因(其突变导致这种情况)有助于维持健康的神经元通讯。在当前的工作中,研究人员从不同的角度研究了 HD 中的突触损失。 关注神经胶质以了解亨廷顿舞蹈症 突变的亨廷顿基因不仅存在于神经元中,而且存在于体内的所有细胞中,这开启了其他细胞类型也可能参与该病症的可能性。“在这项研究中,我们专注于神经胶质细胞,这是一种与神经元对神经元通讯同样重要的脑细胞,”贝勒大学分子和人类遗传学以及分子和细胞生物学教授、贝勒大学成员博塔斯说。德克萨斯儿童医院的 Jan 和 Dan Duncan 神经学研究所。 “我们认为神经胶质可能在促进或补偿亨廷顿病中观察到的损害方面发挥作用。” 最初被认为只是管家细胞,结果证明神经胶质在促进正常的神经元和突触功能方面具有更直接的作用。在之前的一项工作中,Botas 和他的同事研究了 HD 的果蝇模型,该模型在神经元中表达了人类突变亨廷顿 (mHTT) 基因,以了解HD 中发生的众多基因表达变化中哪些是导致疾病的,哪些是补偿性的。 “一类补偿性变化影响了参与突触功能的基因。神经胶质可能参与其中吗?” 博塔斯说。“为了回答这个问题,我们创造了只在神经胶质、神经元或两种细胞类型中表达 mHTT 的果蝇。” 比较基因表达的变化 研究人员通过比较健康人类与人类 HD 受试者以及 HD 小鼠和果蝇模型中存在的基因表达变化来开始他们的研究。他们发现了许多基因,它们的表达在所有三个物种中都以相同的方向变化,但当他们发现 HD 会降低有助于维持神经元连接的神经胶质细胞基因的表达时,他们特别感兴趣。 “为了研究这些基因在神经胶质细胞中表达的减少是否有助于疾病进展或缓解,我们在 HD 果蝇模型中对神经元、神经胶质细胞或两种细胞类型中的每个基因进行了操作。然后我们确定了基因表达对果蝇神经系统功能的影响,”博塔斯说。 他们使用高通量自动化系统评估果蝇的神经系统健康状况,该系统可定量评估运动行为。该系统拍摄了苍蝇自然爬上管子的过程。健康的苍蝇很容易攀爬,但是当它们的移动能力受到影响时,苍蝇就很难攀爬。研究人员研究了苍蝇的运动方式,因为 HD 的特征之一是正常身体运动的逐渐中断。 关闭基因起作用了 结果表明,在 HD 中,抑制参与突触组装和维持的神经胶质基因具有保护作用。研究人员故意拒绝突触基因的果蝇在其神经胶质细胞中带有突变亨廷顿基因的果蝇比突触基因没有被降低的果蝇能更好地爬上管子。 “我们的研究表明,受 阅读更多…

zh_CN简体中文
zh_CN简体中文